In [42]:
from PIL import Image
from numpy import *
from pylab import *
import scipy.misc
In [43]:
from scipy.cluster.vq import *
In [44]:
from scipy.misc import imresize
In [57]:
import os
import hcluster_single
hcluster = reload(hcluster_single)
In [58]:
path = 'alamo/'
imlist = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.jpg')]
In [59]:
features = zeros([len(imlist), 512])
for i, f in enumerate(imlist):
im = array(Image.open(f))
h, edges = histogramdd(im.reshape(-1, 3), 8, normed=True, range=[(0,255), (0, 255), (0, 255)])
features[i] = h.flatten()
In [78]:
tree = hcluster.hcluster(features, hcluster_single.L2dist)
clusters = tree.extract_clusters(0.24*tree.distance)
for c in clusters:
elements = c.get_cluster_elements()
nbr_elements = len(elements)
if nbr_elements>2:
figure(figsize=(8, 8))
for p in range(minimum(nbr_elements, 20)):
subplot(4, 5, p+1)
im = array(Image.open(imlist[elements[p]]))
imshow(im)
axis('off')
show()
hcluster.draw_dendrogram(tree, imlist, filename='alamo_average.pdf')
In [79]:
tree = hcluster.hcluster(features, hcluster_single.L2dist_single)
clusters = tree.extract_clusters(0.24*tree.distance)
for c in clusters:
elements = c.get_cluster_elements()
nbr_elements = len(elements)
if nbr_elements>2:
figure(figsize=(8, 8))
for p in range(minimum(nbr_elements, 20)):
subplot(4, 5, p+1)
im = array(Image.open(imlist[elements[p]]))
imshow(im)
axis('off')
show()
hcluster.draw_dendrogram(tree, imlist, filename='alamo_single.pdf')
In [83]:
tree = hcluster.hcluster(features, hcluster_single.L2dist_complete)
clusters = tree.extract_clusters(0.18*tree.distance)
for c in clusters:
elements = c.get_cluster_elements()
nbr_elements = len(elements)
if nbr_elements>2:
figure(figsize=(8, 8))
for p in range(minimum(nbr_elements, 20)):
subplot(4, 5, p+1)
im = array(Image.open(imlist[elements[p]]))
imshow(im)
axis('off')
show()
hcluster.draw_dendrogram(tree, imlist, filename='alamo_complete.pdf')
In [37]:
tree = hcluster.hcluster(features, hcluster_single.L2dist_single)
In [40]:
clusters = tree.extract_clusters(tree.distance)
for c in clusters:
elements = c.get_cluster_elements()
nbr_elements = len(elements)
if nbr_elements>2:
figure(figsize=(8, 8))
for p in range(minimum(nbr_elements, 20)):
subplot(4, 5, p+1)
im = array(Image.open(imlist[elements[p]]))
imshow(im)
axis('off')
show()
In [41]:
hcluster.draw_dendrogram(tree, imlist, filename='alamo_average.pdf')
In [14]:
path = 'Obama/'
imlist = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.jpg')]
features = zeros([len(imlist), 512])
for i, f in enumerate(imlist):
im = array(Image.open(f))
h, edges = histogramdd(im.reshape(-1, 3), 8, normed=True, range=[(0,255), (0, 255), (0, 255)])
features[i] = h.flatten()
tree = hcluster.hcluster(features, hcluster_single.L2dist)
clusters = tree.extract_clusters(0.24*tree.distance)
for c in clusters:
elements = c.get_cluster_elements()
nbr_elements = len(elements)
if nbr_elements>2:
figure(figsize=(8, 8))
for p in range(minimum(nbr_elements, 20)):
subplot(4, 5, p+1)
im = array(Image.open(imlist[elements[p]]))
imshow(im)
axis('off')
show()
hcluster.draw_dendrogram(tree, imlist, filename='Obama_average.pdf')
In [ ]: